Micropreramming: architectures and control

Lecture 08 on Dadicatad systams
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Groaduate Course in Computer Science, 2014-20

DMI — Graduate Course in Computer Science

et e T e S)
SHBARLDL =1

L MBE R ABD AR B AR)

Table of Contents

Microprogramming: architectures and control
lecture topics

limitations of FSMs

the microprogramming idea
microprogrammed control architecture
benefits of microprogrammed control
microinstruction encoding: address field
microinstruction encoding: command field
microprogrammed datapath
microprogrammed architecture example
microinstruction encoding example (1)
microinstruction encoding example (2)
writing microprograms

microprogram example for GCD computation

references

Copyleft ® 2020 Giuseppe Scollo

DMI — Graduate Course in Computer Science

Copyleft @ 2020 Giuseppe Scollo

1dil6

2di16

lecture topics

outline:

limitations of FSMs

microprogmmming: origins, microprogmmmed in’rerpre’rers
microprogrammed control: architecture, benefits
microinstruction encoding

microprogrammed datapath

writing microprograms

V VV VY VY VY

examples:
> microprogrammed architecture
> microinstruction encoding

> microprogram for GCD computation

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

3dil6

limitations of FSMs

FSM models are well suited to capture the control flow and decision making of algorithms,
however, they lack hierarchy; this gives rise to severe limitations when dealing with complex
control systems

state explosion
the size of the state space of a producf FSM is the produd of the state space sizes of

the component FSMs; even worse, if these have independent transition conditions, the
number of conditions of the product FSM grows exponentially

exception handling

exceptions are conditions that require transition to an exception handling state regardless
of the current state of the machine when they occur; adding exception transitions to a
given transition diagram often obfuscates the main course of control

runtime flexibility

the hardwired control flow defined by an FSM cannot be changed in any other way than
replacing the implemented FSM with another one; the motivation for greater model
flexibility is tied to that for greater hardware Flexibility

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

4dil6

the microprogramming idea

a more flexible control is obtained bg microproyramming it

the fixed schedule by an FSM controller is replaced by the variable one that is

determined by a microprogram, composed of microinstructions, each of which is
translated into datapath control signals

the first idea of microprogramming was proposed by Maurice Wilkes, in 1951, but it found wide
application starting from the sixties, to become dominant in the subsequent decade with the
di&usion of CISC architectures (Complex Instruction-Set Computer)

>

in this idea, the microprogram is an inferpreter, resident in a small control store
% the microinterpreter fetches machine instructions from main memory (that here are
seen as higher-level instructions) and executes each of them by a microroutine, that is a
sequence of low-level microinstructions

the microarchitecture of a CISC processor thus takes the shape of a

"processor inside the processor”, with a fixed microprogram which, durin

every machine cycle, JFe’rches an instruction and executes the microroutine that

is determined by decoding the opcode of the fetched instruction

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

5di16

microprogrammed control architecture

starting from the eighties, RISC architectures (Reduced Instruction-Set Computer) have
c0mpefed with CISC ones, to become dominant even’ruallg

microprogramming is still a very useful technique to increase the flexibility of hardware
design

FSMD Micro-programmed Machine

Jump field
Wl
%]_)
Next- Next-
State —>] Address C;:r':'
status Logic status Logic
! —
CSAR
Micro-
instruction
— Datapath Datapath

Command field

Schaumont, Figure 6.3 - In contrast to FSM-based control, microprogramming uses a flexible control scheme

CSAR (Control Store #Address Register): analogue of the conventional Program Counter
clock cycle determined by the critical pa’rh through the microprogmmmed architecture

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

6di16

benefits of microprogrammed control

microprogrammed control solves the problems of FSMs:

> it scales very well with complexity, for example a 12-bit CSAR may address a 4K-
instruction control store, whereas a 4K-state FSM would be extremely complicated

> with small additions to the architecture in figure £.3 hierarchical control may be
easily implemen’red, for example, by adding a register or a stack to save and restore
the CSAR, one may define microinstructions for microsubprogram call/return

% exception handling is also easy to deal with, by the next-address logic which would
feed the CSAR with the hard-coded address of an exception handling microroutine

% the hardware flexibility advantage is evident, as datapath control may be modified by
just rewriting the control store

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

7dil6

microinstruction encoding: address field

. microinstruction format and encoding is driven
0 1 4 R B 5 6 by design trade-offs; a sample encoding is as
. . ‘ follows
% assumption: 52-bit micro-instruction
Command field Jump field .
size, half for the datapath command,
me the other half for the next-address
logic; we start with the latter
0000 Default CSAR = CSAR + 1
0001 | Jump CSAR = address & 12-bit address field = up to 4K
0010 Jump if carry CSAR = ¢f ? address : CSAR + 1 ‘. . . .
1010 | Jumpifnocary | CSAR=cf? CSAR + 1 address microinstructions in the control store
0100 Jump if zero CSAR = zf 7 address : CSAR + 1 ~Lt ‘. .
1100 Jump if not zero CSAR = zf ? CSAR + 1; address > 4 bl‘t nex‘t F(eld. selec‘ts how ‘to
compute the next address 1o be loaded
e onto CSAR, see table in the Figure
CSAR Nea Next

Address

micro- o
Control |_instruction cf+zf g
Store
datapath
! Datapath flags

command |

[~ csaR

Schaumont, Figure 6.4 - Sample format for a 52-bit
micro-instruction word

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

8di 16

microinstruction encoding: command field

the format in figure 6.4 is not optimal, as the address field is only used for jump instructions—it
may be used for other purposes with other instructions

ooy | Jerteal | orzona another space-time trade-otf is presented by the
icro-instruction Microcode Microcode ¢ H
: alternative for the command field:
Micro-Program Sk 3 (ding : d l
Encodng =81 (&1 horizontal encoding : each datapath contro
a=IN bit is assigned a distinct bit
vertical encoding : shortest encoding of
EE%E:] H l H datapath control bits
sell sei2 alu | galt s0i2 alu a combined solution is often adopted, e.g. the
seHD sal2§:] alu D Cncoding il’\ the ne)d. ‘Field:
Datapath | i

ny
_7
0000 CSAR =CSAR + 1; H "E 2;—‘_@—1

0001 CSAR = Address;

0010 CSAR =cf ? Address : CSAR + 1; CSAR + 1
1010 CSAR =cf 7 CSAR + 1 : Address; CSAR
0100 CSAR = zf 7 Address : CSAR + 1;

1100 CSAR =2zf? CSAR + 1 :Address; Address

-

inv
zf

Sch t, Fi b.5 - E l rtical horizontal
imiaRak 2l microf;:;gri:\fnvif\g e Schaumont, Figure £.6 - CSAR encoding

DMTI — Graduate Course in Computer Science Copyleft ® 2020 Giuseppe Scollo

9di 16

microprogrammed datapath

the da’rapath of a microprogrammed machine consists of three elements:
b compu’raﬁon units
> storage units (register file)

% communication buses

each of these elements may contribute a few control bits to the microinstruction word, for
example:

% multi-function computation units: function selection bits
> storage units: address bits and read/write command bits

% communication buses: source/destination control bits

the da’rapafh may also generate status flags for the microprogrammed controller

DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

10di 16

microprogrammed architecture example

here is an example of microprogrammed control of a datapath that includes: an ALU with shifter unit, a
register file with eight entries, an accumulator register, and an inpu’r port

mixed horizontal/vertical encoding: overall control word Ffields:
h?n.zontal, F?r each unit in the datapa’rh ’r‘akes a Nxt, Address: used by the microprogrammed
d'Sf"“,f portion of J‘be control ‘,”ord’ Yerhcal , controller; the other Fields are used by the
encoding of each unit control signals in that portion datapath
I‘ SBUS‘ ay IS'“"T Dw‘ i | e B ALU: up to 16 ALU operations may be encoded
T ——— [\m SBUS: source operand selection for the ALU
Towm kouslau |omner | Aswess] Y operation, out ot entries in the register file and
I W A 3 input port, the other source operand is the
accumulator
Cont Dest: destination selection for the ALU+shifter
operation, out of entries in the register file and
accumulator
Shifter: shift function selection, up to eight
Schaumont, Figure 6.7 - 4 micro-programmed datapath Funcﬁons
the shifter also generates Flags, which are used by the datapath fetches and executes a microinstruction
the microprogrammed controller to implement every clock cycle
conditional jumps
DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

11 di 16
microinstruction encoding example (1)
table 6.1 presents an example of microinstruction encoding for the given architecture
(First part):
Field Width Encoding
SBRUS 4 Selects the operand that will drive the S-Bus
0000 RO 0101 RS
0001 R1 0110 Ro
0010 R2 0111 R7
0011 R3% 1000 Input
0100 R4 1001 Address/Constant
ALV 4 Selects the operation performed by the ALU
0000 ACC 0110 ACC | 5-Pus
0001 S-Pus 0111 not S-Bus
0010 ACC + S-Pus 1000 S-Pus + 1
0011 ACC — S5-Pus 1001 ACC +1
0100 S-Bus — ACC 1010 0
0101 ACC & S-Pus 1011 1
DMI — Graduate Course in Computer Science Copyleft @ 2020 Giuseppe Scollo

12.di 16

microinstruction encoding example (2)

table 0.1 (second part):

Field Width Encoding
Shifter 3 Selects the function of the programmable shifter
000 logical SHL(ALU) 100 arith SHL(ALD)
001 logical SHR(ALUV) 101 arith SHR(ALY)
010 rotate left ALU 111 ALU
011 rotate right ALU
Dest 4 Selects the target that will store S-Bus
0000 RO 0101 R9
0001 R1 0110 Rb
0010 R2 0111 R7
0011 R3 1000 ACC
0100 R4 1111 unconnected
Nxt 4 Selects next-value for CSAR
0000 CSAR +1 1010 £ ? CSAR + 1: Address
0001 Address 0100 2 ? Address: CSAR + 1
0010 cf ? Address : CSAR + 1 1100 2f? CSAR + 1: Address

DMI — Graduate Course in Computer Science

writing microprograms

Copyleft ® 2020 Giuseppe Scollo

using the encoding defined in table 6.1, a microinstruction is formed by selecting a function for
each module in the datapath and a next address for the Address field (with a suitable don't care

value for this whenever Nxt is null)

by way of example, let's see how an RTL
instruction, such as ACC « R2, is translated 16 a
microinstruction

RT-level
Instruction

ACC - R2

Shifter Dest Nxt
m mDG 0000

{0,0010,0001,111, 1000 OOOO 000000000000}

Micro-Instruction
Field Encoding

Address
000000000000

Micro-Instruction
Formation

{0001.0000,1111,1000,0000,0000,0000,0000}

Micro-Instruction {}
Encoding 0x10F80000

Schaumont, Figure 6.8 - Forming micro-instructions from register—transfer

instructions

v Vv Vv Vv ¥

the source operand is in RZ:
SBUS = 0010

the ALU passes the S-Bus input
to the output: ALU = 0001

The shifter passes the ALU
output unmodified: Shifter = 111
the output of the shifter updates
the accumulator: Dest = 1000
CSAR gets the default
increment: Nxt = 0000 and
Address is a don't care, e.g. all
zeroes

13 di 16

DMI — Graduate Course in Computer Science

Copyleft @ 2020 Giuseppe Scollo

14 di 16

microprogram example for GCD computation

complex control operaﬁons, such as loops and if-then-else statements, can be expressed as

a combination (or sequence) of RTL instructions

as an example, let's develop a micro-program that computes the GCD of two input

numbers using Euclid’s algorithm

the micropronm is written in a symbolic RTL notation that immediatelg translates to
microinstructions in a similar way as in the previous example

Command Field || Jump Field

IN - RO
IN - ACC
Lcheck: (RO - ACC) [l
(RO-ACC) <<1 ||
(RO-ACC)-RO ||
Lsmall: ACC - R0 - ACC ||

Ldone:

JUMP IF Z Ldone
JUMP IF C Lsmall
JUMP Lcheck
JUMP Lcheck
JUMP Ldone

Schaumont, Listing 6.1 - Micro~Progmm to evaluate a GCD

DMI — Graduate Course in Computer Science

references

recommended readings:

Schaumont, Ch. b, Sect. 0.1-b.4

for further consultation:

Schaumont, Ch. b, Sect. b.0-0.8

Copyleft ® 2020 Giuseppe Scollo

15di 16

DMI — Graduate Course in Computer Science

Copyleft @ 2020 Giuseppe Scollo

16 di 16

