HW/SW communication, on-chip bus systems

Lecture 09 on Dedcatead systanms
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Computer Science, 2018-149

DMI — Graduate Course in Computer Science

O N S S S S G S
S N R A i

1.
17.

D NS W A mIDe

Table of Contents

HW/SW communication, on—chip bus systems
lecture topics

the hardware/software interface

the synchronization problem

synchronization with a semaphore
synchronization with two semaphores
synchronization with handshake

blocking and nonblocking data transfer
performance constraint factors

tight or loose coupling

on-chip bus standards

bus components

physical implementation of on-chip busses
bus timing diagrams

a generic bus definition

correspondence of standard busses to the generic bus
references

Copyleft @ 2014 Giuseppe Scollo

DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

1di18

2di18

lecture topics

outline:
> components of the hardware/software interface
> the synchronization problem: concepts and dimensions
> synchronization schemes
% synchronization with semaphores
% synchronization with handshakes
% blocking and nonblocking data transfer
> performance constraint factors: computation vs. communication
> tight or loose coupling
> a few on—chip bus standards
> components and physical implementation of an on-chip bus
> bus timing diagrams
> abstraction of a few standard busses in a generic bus definition

DMI — Graduate Course in Computer Science

the hardware/software interface
Figure 4.1 presents a synopsis of the elements
in a HW/SW interface

. the function of the HW/SW interface is to

—© connect the software application 16 the custom-
hardware module; this objective involves five
elements:

o_
e_

ssor
rface ?
j ; On-chip Bus

Schaumont, Figure 4.1 - The hardware/software interface

on-chip bus: either shared or point-to-point, it transports data between the microprocessor
module and the custom-hardware module

microprocessor interface: hardware and low-level firmware to allow a software program to ‘get
out’ of the microprocessor, e.g. by coprocessor instructions or memory access instructions
hardware interface: handles the on-chip bus protocol, and makes the data available to the custom-
hardware module through registers or dedicated memory

software driver: wraps transactions between hardware and software into software function calls,
while mapping software data structures into structures that fit hardware communication
programming model: presents an abstraction of the hardware to the software application; to
implement this mapping, the hardware interface may require additional storage and controls

Copyleft @ 2014 Giuseppe Scollo

DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

3dil8

4di18

the synchronization problem

. i synchronization: the structured interaction of two otherwise
i ar independent and parallel entities
N i e j in figure 9.2, synchronization guarantees that point 4 in the
SR execution thread of the microprocessor is tied to point B in

Schaumont, Figure 4.2 - Synchronization point the control flow of the COPFOC&SSOF

synchronization is needed to support communication between parallel subsystems: every falker needs to

have a listener to be heard

% e.9., in a dataflow system, hardware and software actors need to synchronize on their token
transfers

% even if the dataflow edge is implemented as a FIFO memory, the requirement to synchronize
does not 9o away, for the FIFO has finite capacity, hence the sender needs to wait when the
FIFO is full, while the receiver needs to wait when the FIFO is empty

Synchronizaton three orthogonal dimensions of the synchronization
[Time T [Data] TConuwI] PrOblem:

fime: time granularifg of interactions

Glock Gycl Blockin .
=i J = % [} data: structural complexity of transferred data
Bus Transfer Scalar Non-Blocking B .
control: relationship between local control flows
—>[Transaction] Composite]

Schaumont, Figure 4.5 - Dimensions of the synchronization problem

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

5dil8

synchronization with a semaphore

write shared_data write shared_data write shared_data

semaphore: a synchronization primitive S
to control access over an abstract, shared P MR [y v [y
resource, by operations: shen sy

P(S): (try to) get access, wait if 50,
else 50
V(S): release resource, 5«1 Two il I e

time

short_delay short_delay

T T
' '
] I
= 93
v v
' '
' I
' I
' I
i I
i I
' I
' I
|

time
int shared_data; read shared_data read shared_data read shared_data

semaphore S1; [TLI L \
F Schaumont, Figure 9.4 - Synchronization with a single semaphore

(S1); synchronization poin’ts: when entity one calls N(S1), so
while (1) { unlocking the stalled entity two

short_delay();
this scheme only works under the assumption that

entity one {
P(S1):

shared_data = ...;

V(S1); 1 synchronization point ¢ . \ .
} d PRPPPY entity two is faster in reading the shared data than
! entity one is in writing it
egﬂg’rt%?el{ay(); just assume the opposite, viz. move the short _delay()
WQE'SS;){ 1/ synchronization point Fund.ion ca‘ll from the while-loop in entity one to the while-
received_data = shared_data; lbbp in en’tdg two ...
} generally, in the producer/consumer scenario, both

Schaumont, Listing 4.1 - One-way synchronization with a semaphore entities may need to wait For each other

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

6di18

synchronization with two semaphores

the situation of unknown delays can be
addressed with a two-semaphore scheme

51 is used to synchronize entity two,
52 is used to sgnchronize entity one

int shared_data;
semaphore S1, S2;

entity one {
P(S1):

while (1) {
variable_delay();
shared_data = ...;
V(81); // synchronization point 1
P(S2); /I synchronization point 2
}

}
entity two {
P(S2);
while (1) {
variable_delay();
P(S1); // synchronization point 1

received_data = shared_data;
V(S2); /I synchronization point 2
}

}

Schaumont, Listing 4.2 - Two-way synchroniznﬁon with two semaphores

write shared_data write shared_data

P(s1) V(s1) P(s2) l\.’(sw
One } 1 stall {
T T I_{ T time
var_delay(i var_delay() :
| :
Synchronize on 52 Synchronize on 81
!]
: |
|
P(51) !

P(S1) V(S2)
|

S —————

time

|
var_delay() | l | var_delay()
> f
read shared_data

Schaumont, Figure 4.5 - Synchronization with two semaphores

figure 4.5 illustrates the case where:

% on the first synchronization, entity one is quicker
than entity two, and the synchronization is done
using semaphore SZ, whereas

% on the second synchronization, entity two is

faster, hence synchronization is done using
semaphore 51

DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

7dil8

synchronization with handshake

in parallel systems, a centralized semaphore may not be feasible; a common alternative is

a handshake: a signaling protocol based on signal
levels; the most simple one is:

Entity One Entity Two

~qd/

qd/_

e

Py

50 S1
5283

Tsynchronlzation point

Schaumont, Figure 9.6 - One-way handshake

one-way handshake has a similar limitation as one-
semaphore synchronization, the solution is:

Entity One Entity Two

~rd/

ks

i =t r=1
rd / q qd
L qd/
r=1
_lr=0

< 2z

fg=1 -qd/

5?50 S0-.S0 S0-+S50 8051
§?-+8? | 8?2+8?; §?2 82

8283

Tsynchromza!ion point

Schaumont, Figure 4.7 - Two-way handshake

DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

8dil8

blocking and nonblocking data transfer

if a sender or receiver arrives too early at a synchronization point, should it wait idle until the
proper condition comes along, or should it 9o off and do something else?

@ 0 blocking data transfer will stall the execution flow of the software or hardware until the
data-transfer completes

e.g., if software has implemenfed the data transfer using function calls, then
these functions do not return until the data transfer has comple‘red

o a nonblocking data transfer will not stall the execution flow, but the data transfer may be
unsuccessful

a software function that implements a nonblocking data transfer will need to
introduce an additional status Flag that can be tested

both of the semaphore and handshake schemes discussed earlier implement a blocking data-
transfer

in order to use these primiﬁVes for a non-blocking data transfer, the outcome of the
synchronization operation should be testable without actually engaging in it

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

9dil8

performance constraint factors

computational speedup is often the motivation for the v e
P P P

design of custom hardware
however, the hardware/software interface is also
relevant to the resulting system perFormance

32 32128 128

Microprocessor Custom-HW
. . . Interface Interface
communication constraints need to be evaluated as well!
e.g., assume the custom-HW module in fig. 4.8 takes 5 ii Onchip Bus 32t ji
clock cycles to compute the result, with a 320-bit total data !
transfer size per execution: can the system actually perform Schaumont, Figure 4.8 - Communication constraints of a
at a rate of 520/5 - b4 bits per cycle? coprocessor
e Dt biih the number of clock cycles needed per execution
H cyel i] A
pry e of the custom hardware module is related to its
] : e hardware sharing factor (HSF) =4.¢ number of
Hardware/Software i = Hardware < 7
Interface B |:> H Module available clock cycles in between each 1/0 event
Computation il W Architecture HSF
Constrained | B "N
Systolic array processor 1
= i v w Bit-parallel processor 1-10
‘::",;::{::,E:;:" il e Bit-serial processor 10100
Micro-coded processor >100
Schaumont, Figure 4.9 - Communication-constrained system vs.
computation-constrained system Schaumont, Table 4.1 - Hardware sharing factor
DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

10di 18

tight or loose coupling

coupling indicates the level of interaction between
execution flows in software and custom hardware

tight = frequent synchronization | data transfer
loose = the opposite
coupling relates sgnchronizaﬁon with perFormance

Software

input data [

resut [

Custom Hardware

synenronization
point

> [t

synchronization

inputdata [] point

resut [

inputdata]

result [

B

synchronization
int

synehronization
int

input data [poi

rosuit]

1

[] compute

-->
[f compute

Schaumont, Figure 4.10 - Tight coupliv\g versus loose couplin9

Software

input data D
L A
result D

synchronization
point

-
synchronization
point

Custom Hardware

} compute

Coprocessor Memory-mapped
Factor interface interface

Addressing Processor-specific ~ On-chip bus address

Connection Point-to-point Shared
Latency Fixed \oriable
Throughput Higher Lower

Schaumont, Table 4.2 - Comparing a coprocessor interface with a memory-
mapped interface

example: difference between
coprocessor interface: attached to a dedicated
port on the processor
memory-mapped interface: attached to the
memory bus of the processor
N.B.:a high degree of parallelism in the overall
design may be easier to achieve with a loosely-
coupled scheme than with a tightly-coupled scheme

DMI — Graduate Course in Computer Science

Copyleft @ 2019 Giuseppe Scollo

on-chip bus standards

four families of on-chip bus standards, among the most widely used ones:

% AMB#A (Adwnced Microcontroller Bus Architecture): family of bus systems used by ARM processors

% CoreConnect: bus system for the PowerPC line of IBM processors

% Wishbone: open-source bus system proposed by SiliCore Corporation, used by many open-source
hardware components, e.g. those in the OPenCores projec‘t

% Awlon: bus system for SoC applications of Intel's Nios 11 processors

two main classes of bus configurations: shared and point-to-point
further variants depending on speed, interface, topology, etc,, see table 10.1
a generic shared bus and a point-to-point one are considered next, abstracting common features of all of them

High-performance Periferal Point-to-point

Bus shared bus shared bus bus Legenda

AHB AMBA highspeed bus
AMBA V3 AHB APB #APB AMBA peripheral bus
AMBA v4 AXI4 AXI4-lite AXI4-stream AXI adwanced extensible interface
CoreConnect PLB orp PLB processor local bus
Wishbone Crossbar topology Shared topology Point to point topology OPB onchip peripheral bus
+valon +valon-MM Avalon-MM Avalon-ST MM memory-mapped

ST streaming

Schaumont, Table 10.1 - Bus configurations for existing bus standards

11di18

DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

12di 18

bus components

a shared bus on-chip typically consists of a few segments, connected by bridges; every transaction is initiated
by a bus master, to which a slave responds; if they are on different segments, then the bridge acts as a slave
on one side and as a master on the other side, while performing address translation

four classes of bus signals:

data: separate data lines for read o meadin » A o
and write L Ao =

] Dat: lave
address : decoding may be Moster! Mastec2 Bridge «Conro T ey

centralized or local by the slaves Abter ;I ’—Dj, . =
command: to distinguish read from s
write, often qualified by more signals D [:I—] d] E [:]—] [ﬁ l """""

PT) “ e Bridge |
synchronization : clocks, distinct per Sivel Savez Slaves Slaves Slaves ow | T s]
bus segment, and possibly others, Seamni Segment2 Segment 1 Segment2
such as: handshake signals, time-out,
etc. Schaumont, Figure 10.1 - (a) Example of a multi-master segmented bus system.

(b) Address space for the same bus

Waster Stave a point-to-point bus is a dedicated physical connection between a master and a slave,
syne for unlimited stream data transfer

(stream) |—oanne! % no address lines, but there may be for logical channel, in case of

R — multiplexing of several streams over the same physical bus

% synchronization similar to the handshake protocol seen before
Schaumont, Figure 10.2 - Point-to-point bus

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

13di 18

phgsical implementaﬁon of on-chip busses

figure 10.5 shows the physical layout of a typical on-chip bus segment with two masters and two slaves, where AND
and OR gates in the center of the diagram serve as multiplexers, of both address and data lines

m1_addr +

1 _orant mi_wdata
=2 m1_enable bus_addr + bus_wdala
Master1 Slave 1
m1_request
Arbiter
m2_grant
Master2 bus_rdata s2_rdata Slave 2
n2_requast $2_enable

Schaumont, Figure 10.3 - Physical interconnection of a bus. The *__addr, *__wdata, * _sdata signals are signal vectors. The *__enable, *__grant,
*__request signals are single-bit signals

signal naming convention about read/write data:
writing data means sending it from master to slave
reading data means sending it from slave to master
bus arbitration ensures that only one component may drive any given bus line at any time
naming conventions help one to infer Funcﬁonalh‘? and connectivity of wires based on their names
for example, a naming convention is very helpful to read a timing diagram, or to visualize the connectivity in a (textual)
netlist of a circuit
a component pin name will reflect the functionality of that pin; bus signals, which are created by interconnecting
component pins, follow a convention, too, in order to avoid confusion between similar signals
e.q., in figure 10.3, each of two master components has a wdata signal; to distinguish these signals, the component
instance name is the prefix in the bus signal name (e.q. m2_wdata)

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

14 di 18

bus timing diagrams

because of the inherently parallel nature of a bus system, timing diagrams are extensively used to

describe the timing relationships of bus signals

clk I I] l
strb_i i / \ A |
s(rbfo_-'—_\ | | T4 g

addr_o[31:0]

0x8F000000 X 0x0 X 0xBF000004

data_i[7:0] //(//ﬁ///ﬂ oxi2

the diagram in figure 10.4 shows the notation
to describe the activities in a generic bus over
five clock cycles

o

all signals are referenced to the
upgoing edge of the clock signal, shown
on to

input signals in a clock cycle take their

vec_i[15:0] 0xA028

Schaumont, Figure 10.4 - Bus

‘HH”H‘ 0xF4CO |

value pefore its starting clock edae

ou’rruf signals established in a clock
cycle take their value after its ending
timing diagram notation clock edge

bus timing diagrams are very useful to describe the activities on a bus as a function of time
they are also a central piece of documentation for the design of a HW/SW interface

DMI — Graduate Course in Computer Science

a generic bus definition

Copyleft @ 2014 Giuseppe Scollo

15di 18

table 10.2 lists the signals that make up a generic bus, abstracting from any specific system

Signal name

Meaning

Clock signal. All other bus signals are references to the upgoing clock edge

Read-not-Write. Control line to distinguish read from write operations
Master select signal, indicates that this master takes control of the bus
Slave acknowledge signal, indicates transfer compleﬁon

Used for the address in place of s_ack in split-transfers
Used for the write-data in place of s_ack in split-transfers

Used for the read-data in place of s_ack in split-transfers

Indicates that the bus is locked for the current transfer

clk

m_addr Master address bus

m_data Data bus from master to slave (write operation)
s_data Data bus from slave to master (read operation)
m_rnw

m_ sel

s ack

m_addr valid Used in place of m_sel in split-transfers
s_addr_ack

s wr ack

s rd ack

m_burst Indicates the burst type of the current transfer
m_lock

m_req Requests bus access to the bus arbiter
m_grant Indicates bus access is granted

Schaumont, Table 10.2 - Signals on the generic bus

DMI — Graduate Course in Computer Science

Copyleft @ 2014 Giuseppe Scollo

16 di 18

correspondence of standard busses to the generic bus

table 10.3 shows the correspondence of some of the generic bus signals to equivalent signals of the
CoreConnect/OPB, AMBA/ AP, Avalon-MM, and Wishbone busses

generic ~ CoreConnect/OP% AMBA/ APB Avalon-MM Wishbone

clk OPB_CLK PCLK clk CLK I (master/slave)

m addr Mn ABUS PADDR Mn_address ADDR O (master)
ADDR I (slave)

m rnw Mn RNW PWRITE Mn_write n WE_O (master)

m_sel Mn_Select PSEL STB O (master)

m data OPB DBUS PWDATA Mn writedata DAT O (master)
DAT I (slave)

s _data OPB DBUS PRDATA Mb readdata DAT I (master)
DAT O (slave)

s ack Sl XferAck PREADY Sl waitrequest ~ ACK O (slave)

Schaumont, Table 10.3 - Bus signals for simple read/write on Coreconnect/ OPB, ARM/APB, Avalon-MM and Wishbone busses

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

17 di 18

references

recommended readings:

Schaumont, Ch. 4, Sect. 4.1-49.4
Schaumont, Ch. 10, Sect. 10.1

readings for further consultation:

Schaumont, Ch. 10, Sect. 10.2-10.4
Awlon® Interface Specifications, MNL-AABUSREF, Intel Corp., 2018.049.26

DMI — Graduate Course in Computer Science Copyleft @ 2014 Giuseppe Scollo

18 di 18

