Architectures and design process of dedicated systems

Lecture 02 on Deadicatad systams
Teacher: Giuseppe Scollo

University of Catania
Department of Mathematics and Computer Science
Graduate Course in Computer Science, 2016-17

Table of Contents
1. Architectures and design process of dedicated systems
2. lecture topics
2. hardware vs software design paradigms
4, software program development
o. software program analysis
. codesign models
7. example: functions on Collatz trajectories
8. Collatz deloy datapath, v. 1
q. a Collatz delay codesign model
10. Collatz deloy datapath, v. 2
11. concurrency and parallelism
12. example: parallel addition
13, references
DM — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

1di14

2dil4

lecture topics

outline:

dualism of hardware design vs software design paradigms
software program development and analysis

codesign models

example: a Collatz delay component for codesign

concurrency and parallelism

VvV ¥V V V VYV

proposed problems (in the reserved area)

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

3dil4

hardware vs software design paradigms

keg proFessional challenge in hardware-software codesign:
capabili’rg to combine two radically different design pamdigms

hardware and software are the dual of one another in many respects

here is a comparative synopsis of their fundamentol differences (Schaumont, Table 1.1)

Har dware Software
Design Paradigm Decomposiﬁon in space Decomposiﬁon in time
Resource cost Area (¥ of gates) Time (# of instructions)
Flexibili’rg Must be designed-in Implicit
Parallelism Implicit Must be designed-in
Modeling Model # implementation ~ Model ~ implementation
Reuse Uncommon Common
DMI — Graduate Course in Cbmputer Science Cowleﬁ @ 2016-2017 Gu'useppe Seollo

4dil4

software program development

software models are programs, therefore implementations, yet they are developed at ver
Y 9 P Y Y P Y

different abstraction levels

int max;

int findmax(int a[10]) {
unsigned i;
max = al[0];
for (i=1; i<10; i++)

if (af[i]l] > max) max = a[i]l;

00~ O BN =

Schaumont, Listing 1.1 - C example

this fairly high-level model gives little
information about the cost of its execution,
in terms of machine instructions
to this purpose one needs to analyse
a low-level model, such as the
assembly program produced by a
compiler

.text
findmax:
ldr
ldr
str
mov
L7
ldr
ldr
add
cmp
strgt
cmp
movhi
b
% i b &
.align
LL10:
.word

r2,
r3,
r3,
ip,

i Wi
r3.
ip,
) <
rl,
ip,
pc,
L7

max

.L10
[x0,
[x2,
#1

#0]
#0]

[ro,
[x2,
ip,
r3
[r2,
#9
<

ip, asl #2]
#0]
#1

#0]

Schaumont, Listing 1.2 - ARM assembly example

DMI — Graduate Course in Computer Science

software program analysis

Copyleft @ 2016-2017 Giuseppe Scollo

even if one is not familiar with all details of a particular assembly language, finding the
corresrondence between high-level source instructions and assembly instructions is not so

difficult as it may seem

int max; text
findmax: ldr r2, .L10
int findmax(int af10]) { ldr r3, [x0, #0]
unsigned i; str r3, [r2, #0]
max = a[0]; mov ip, #1
for (i=1; BT ldr [0, ip, asl #2]
- b ldr r3y [x2, #01]
add ip, ip, #1
cmp gt WD |
{strgt rl, [x2, #0]
TP e, T
movhi pc, 1ir
b a8y |
«Ldd align 2
L10: word max

Schaumont, Fig. 1.2 (edited) - Mapping C to assembly

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

5di14

6dil4

codesign models

a simple example highlights the variety of models which come into play in hardware-
software codesign:

Software Hardware & software models: the C program, its
E 8051 Microcontroller Coprocessor E miC(OPrOCCSSO\’ machine—lar\guage
C Program ! !
void main() { 8 H execufable
.- i K i A ') -+ decoder E ,
e 5} > i & hardware models: microprocessor,
. 8 i coprocessor, hardware interface
25"~ P1 A :
between them

Tttt o g model of the hardware-software
Schaumont, Fig. 1.5 - A codesign model interFace: which instructions
determine which interactions between
microprocessor and coprocessor

the details of the formalization of this example in Gezel are deferred to a later lab tutorial

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

7 di 14

exnmple: Functions on Collatz trajedories
the hardware da’rapa’rh presen’red in the first lecture could hardlg serve as a coprocessor to
accelerate the visualization of a Collatz ’rrajec’rorg
why?

however, it may be embedded in a coprocessor that is designed to accelerate the
computation of functions on a Collatz trajectory

for example: the delay of the trajectory, its (highest) peak value, etc.

to this purpose a redefinition of the circuit interface is needed, as well os its extension with
some control logic, e.q. to stop the computation and output the result upon the first “1'
occurrence in the 'trajectorg

N.B. with respect to the Collatz delay, take it into account that:
% the delay grows by 2 at every iteration from an odd value

> '1'is a legol initial value, in which case the delay is O

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

8dil4

Collatz delay dafapa'th, v. 1l

an extension of the circuit seen in the first lecture that does not output the trajectory,
rather its dela_y:

@_, i Gezel representation:
> = stop
dp delay_collatz (
[done jn start : ns(1) ; in x0 : ns(16) ;
%, 16 :’ 7 0] out done : ns(1) ; out delay : ns(16))
x| [x-at { regr:ns(32);
S‘a"_g i IT' i reg d : ns(16) ;
|_A_| reg stop : ns(1) ;
sig x : ns(32) ;
! always {x =start ?x0:r;
r=x[0]?x+(x>>1)+1:x>>1;

done = (x==1)|stop;

stop = done ;
d=done? (start?0:d):d+1+x[0];
Hardware datapath for the delay of a Collatz trajectory delay = d ;
b}
DMI — Graduate Course in Computer Science Copyleft & 2016-2017 Giuseppe Scollo

9di14

a Collatz delay codesign model

the interface of the datapath just seen suggests an easy implementation of the coprocessor

as a memory-mapped I/0 device, for example equipped with:

S control register, including the start bit

> state register, including the done bit

% a bidirectional data register, which may be made use of both for the initial input and
for the output of the result

but... is the aforementioned datapath adequate to perform the required computation for
subsequent interactions with the software?

DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo

10di 14

Collatz deloy dalapa‘lh, V.2

revised circuit for the delay of Collatz trajectories:

Compare
®_—)) =
T

32
x. 16 4 / X[0]
9 1
x| a1
start

Hardware datapath for the delay of Collatz trajectories

Gezel represen’raﬁon:

dp delay_collatz_rev (
in start : ns(1) ; in x0 : ns(16) ;
out done : ns(1) ; out delay : ns(16))
{ regr:ns(32);
reg d : ns(16) ;
reg stop : ns(1) ;
sig X : ns(32) ;
sig dO, dd : ns(16) ;
always {x=start ? x0 :r;
r=x[0]?x+(x>>1)+1:x>>1;
done=(x==1)| (stop & ~start) ;
stop = done ;
dd =1 +x[0] ;
do=start?0:d;
d =done ?d0:d0+dd;
delay =d;
P}

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

11di 14

concurrency and parallelism

concurrency and parallellsm are not synonyms:

® concurrent processes: mutual independence of their compulaﬁons

p pamllel processes: simultaneity of their executions on different processors or

circuits

concurrency is a feature of the application,
parallelism is a feature of its implementation, that
requires:

S concurrency in the application, and

S parallel hardware architecture

e.g. the Connection Machine (CM), see
figure

Amdahl's law sets at 1/5 the maximum speed-up that
may be achieved by parallel execution of an application
that has a fraction s of sequential execution

Schaumont, Fig. 1.4 - Eight node connection
machine

DMI — Graduate Course in Computer Science

Copyleft @ 2016-2017 Giuseppe Scollo

12 di 14

example: Pamllel addition

is it difficult to devise concurrent algorithms for parallel architectures?
not necessarilg, it depends on preramming education and habits

for example, consider the sum of n numbers on the CM, say with n = B, by assegning one
of the summands to each processor initially

the algorithms illustrated next compute the sum in [logz(n)] steps

sum(1.2)

[[
N EEEGEE

i g8 £ es i g 8 e £3 jgg

sum(1..8) sum(1..2) sum(1..3) sum(1..4) sum(1..5) sum(1..6) sum(1..7) sum(1..8)

Schaumont, Fig. 1.10 - Parallel sum Schaumont, Fig. 1.11 - Parallel partial sum
DMI — Graduate Course in Computer Science Copyleft @ 2016-2017 Giuseppe Scollo
13 di 14
references
recommended readings:
Schaumont (2012) Cap. 1, Sez. 1.1.2-1.1.3, 1.5, 1.7
for Further consultation:
F. \ahid & T. Givargis (2002) Cap. 1, Sez. 1.5-1.0
C. Brandolese, W. Fornaciari (2007) Cap. 1
DMI — Graduate Course in Cbmpuier Science Cowleﬁ @ 2016-2017 Giuseppe Scollo

14 di 14

