
Extreme Apprenticeship Method in Teaching Programming
for Beginners

Arto Vihavainen, Matti Paksula and Matti Luukkainen
University of Helsinki

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

Fi-00014 University of Helsinki
{ avihavai, paksula, mluukkai }@cs.helsinki.fi

ABSTRACT
Learning a craft like programming is efficient when novices
learn from people who already master the craft. In this pa-
per we define Extreme Apprenticeship, an extension to the
cognitive apprenticeship model. Our model is based on a set
of values and practices that emphasize learning by doing to-
gether with continuous feedback as the most efficient means
for learning. We show how the method was applied to a CS
I programming course. Application of the method resulted
in a significant decrease in the dropout rates in comparison
with the previous traditionally conducted course instances.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education Computer Science Education

General Terms
Design, Human Factors

Keywords
cognitive apprenticeship, course material, continuous feed-
back, instructional design, programming education, motiva-
tion, best practices, learning by doing

1. INTRODUCTION
Teaching programming is hard. Lots of research from

many different perspectives has been devoted to the topic
during the past couple of decades (see eg. [23, 21]), but
there is still no consensus on what is the most effective
way to teach programming. Most universities are still us-
ing a traditional format in the introductory programming
courses (CS I courses). The traditional format consists of
lectures, take-home assignments and perhaps also demo ses-
sions where model solutions to the exercises are shown (see
eg. [7, 24]). Lectures tend to be structured according to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

the language constructs, rather than the more general ap-
plication strategies. This approach is used despite various
research results [31, 23, 25] indicating that the problem is
not to learn the syntax or semantics of individual language
constructs, but to master the process on how to combine
constructs to meaningful programs.

The language constructs introduced in lectures are typ-
ically applied in programming exercises. With very little
support to the programming process, doing exercises is hard
for part of the student population [7, 24], to those who in
the literature are characterized as stoppers [22] or ineffec-
tive novices [23]. Many of these end up dropping the course
due to not being able to solve problems and therefore feel-
ing inadequate. Another problem of take-home exercises is
that students may learn bad work habits from solving the
problems by themselves.

The context in which students do exercises themselves can
be regarded as a minimally guided environment. It is well
known in educational psychology (see e. g. [20]) that, due
to the nature of human cognitive architecture, a minimally
guided approach is not optimal for novices learning a cogni-
tively challenging task, such as programming.

In this paper we will describe a variation of Cognitive Ap-
prenticeship called Extreme Apprenticeship that has a strong
emphasis on guided programming exercises. We also report
the experiences from its first application at the University
of Helsinki Department of Computer Science.

2. PEDAGOGICAL BACKGROUND
The dropout rates of introductory programming courses

tend to be high1, so it is quite evident that the traditional
approach shoud be improved.

One of the most interesting approaches in programming
instruction is Cognitive Apprenticeship Model [9, 10], where
the focus is on the process rather than just on the end prod-
ucts. Cognitive Apprenticeship also puts a heavy emphasis
on optimizing coaching and guidance available to the stu-
dents.

Numerous studies have shown that both the motivation
and the comfort level of students have a remarkable effect
on learning [5]. Cognitive Apprenticeship already has many
ingredients to boost both, but also the role of programming
exercises is remarkable.

1E.g. in University of Helsinki the long term average drop-
out rate has been c.a. 45 %.

93

2.1 Cognitive Apprenticeship
The Cognitive Apprenticeship Model has recently had ma-

ny applications in teaching programming with positive re-
sults (see e. g. [1, 6, 8, 16]). The model is based on the an-
cient model of apprenticeship education where a profession
is learned while working under the guidance of a senior mas-
ter. Traditionally the apprenticeship model has been mostly
applied in context of learning professions that require phys-
ical skills such as shoe making. In Cognitive Apprenticeship
the emphasis is more on acquiring cognitive skills.

The key observation in Cognitive Apprenticeship is that
when teaching novices, masters of a skill do not usually take
into account the complex process that leads to end products
[9, 10]. As stated previously this is far too common also in
teaching programming.

Cognitive Apprenticeship divides instruction into three
stages: modeling, scaffolding and fading. In the modeling
stage the teacher gives students a conceptual model of the
process, with which an expert performs the task under study.
One effective way of modeling is to base the lectures on
worked examples [8] instead of concentrating on language
structures. A worked example shows e.g. completion of a
programming task from start to finish. While completing
the task, the teacher is thinking aloud all the time, explain-
ing the decisions made during the process.

After the modeling stage, students move to the scaffolding
stage. Typically this means that the students are exposed
to exercises that are made under the guidance of an expe-
rienced instructor. Scaffolding refers to the way support is
given to the students. The key idea is that students are not
given straight answers, but rather just enough hints to be
able to discover the answers to their questions themselves.
Scaffolding is based on Vygotsky’s idea that learning is most
efficient when a student is given just enough information
that is enough to boost the student’s ability to finish the
task [27].

When the student starts to master a task by himself, the
scaffolding should be dismantled. This is the fading stage of
apprenticeship learning.

The Apprenticeship-based approach to learning program-
ming seems to be advocated also by the Agile and Software
Craftsmanship people in the industry, such as Robert Mar-
tin who has stated that ”Software is a craft that takes years
to learn, and more years to master. The only way to prop-
erly learn the craft is to be taught at the side of a master”
[19]. Martin calls for apprenticeship-type mentoring to the
software industry, where the recently graduated apprentices
would work in a software project context with constant in-
teractive guidance by journeymen and masters.

2.2 The roles of programming exercises
Somewhat surprisingly the applications of Cognitive Ap-

prenticeship to programming instruction have not had much
emphasis on the role of programming assignments. It seems
evident that the exercises are crucial in learning program-
ming, and there also exists empirical data to support this
fact [12].

The Active Learning [14]-based methods (eg. [28, 11]) do
raise the programming activity of students to a big role, but
seem to still stress collaborative aspects more than individ-
ual effort.

Programming exercises can have an even more important
role than just applying the theory taught in lectures, as

Roumani [24] stated ”we think of them (assignments) as
teaching instruments that complement lectures by teaching
the same material but in an exploratory fashion”.

In addition to being an important learning instrument,
programming exercises have a huge impact on the motiva-
tion of the students. It is well known that the level of mo-
tivation correlates positively to success in learning [15, 18].
Empirical evidence for this exists also from the field of pro-
gramming instruction [5].

It has especially been shown that students who are per-
forming activities for the activities themselves, i.e., intrin-
sically motivated students perform better than those who
seek extrinsic rewards [17]. Giving too difficult program-
ming assignments is a certain way to kill the motivation of
weaker students, but suitably challenging and relevant ex-
ercises with short-term goals that students can achieve are
known to raise intrinsic motivation [17, 26, 18].

The way students get instructional feedback also has an
effect on their motivation. Talking with students about their
solutions and problem solving strategies while giving them
hints on how to improve them is known to have a positive
impact on student motivation [18], so from the motivation
point of view, the type of programming exercises and the
guidance available when solving exercises are crucial for the
effectiveness of the scaffolding phase in the apprenticeship
type of instruction.

Besides motivation, the comfort level of a student has been
shown to have a remarkable impact on learning (see eg. [5,
30, 29]. Their comfort level incorporates students orien-
tation to themselves (self-esteem) and judgement of their
capabilities to execute the required tasks (self-efficiency) [2,
5]. According to Bandura [2], the most important source of
self-efficiency is the student’s evaluation of the outcomes of
his attempts to perform activities. Thus, suitable exercises
with proper guidance and feedback are an essential tool for
building students’ comfort levels.

3. EXTREME APPRENTICESHIP METHOD
One of the ideas in Extreme Programming [4] is to take a

group of software development best practices and take those
to the extreme levels. For example, in order to improve the
quality of written code, development teams should have code
reviews. In Extreme Programming this practice becomes
integrated as a technique called pair programming where
the practice is taken to an extreme level: code is written
under constant reviewing.

We took a similar approach in teaching of programming
where we constructed our method on top of the Cognitive
Apprenticeship model. Especially the scaffolding stage of
the model is stressed.

Extreme Apprenticeship Method
The following values are stressed during all the course ac-
tivities:

• Learning by doing. The craft will only be mastered
by actually practicing it.

• Continuous feedback. Continous feedback must be
implemented in both directions. The student receives
multi-level feedback from his progress and instructors,
and the instructor receives feedback by monitoring the
students progress and challenges.

94

• No compromise. The skills to be learned are prac-
ticed as long as it takes for each individual.

• An apprentice becomes a master. The ultimate
goal of instruction should be that the student will even-
tually become the master.

The values above induce a set of the following practices
that are applied in actual course implementation:

• Avoiding tons of preaching. Since the effectiveness
of lectures in teaching programming is questionable,
the lecturing should cover only the bare minimum to
get started with exercises.

• Relevant examples. Topics covered in the lectures
have to be relevant for the exercises.

• Start early. Exercises start right after the first lec-
ture of the course. During the first weeks of the course
all the students are already solving an extensive amount
of simple exercises. This gives all the students a strong
routine of code writing and a motivation boost right
at the start of the course.

• Help available. Exercises are completed in a lab in
the presence of instructors who are offering the scaf-
folding style of guidance.

• Small goals. Exercises are split into small parts with
clearly set intermediate goals.

These small intermediate steps guarantee that students
feel that they are learning and making progress all the
time.

• Exercises are mandatory. Since the exercises are
the main instrument in learning, the majority of the
exercises are mandatory for all the students.

• Train the routine. The amount of exercises should
be high and to some extent repetitive in their nature.

• Clean guidelines. Exercises have to provide clear
starting points and structures on how to start solving
the task.

• Encourage to look for information. While do-
ing the exercises students are also required to find out
things that are not covered during the lectures.

4. APPLYING THE METHOD
The method was applied in introductory programming

courses at the Department of Computer Science at the Uni-
versity of Helsinki. For administrative purposes the one
semester CS I introductory Java programming course is given
in two separate parts. The courses Introduction to Pro-
gramming and Advanced Programming are taught as sep-
arate units where Advanced programming further deepens
the knowledge built during the Introduction to programming
course. Both parts last 6 weeks, totalling the length of one
semester.

Introduction to programming covers assignment, expres-
sions, terminal input and output, basic control structures,
classes, objects, methods, arrays and strings. Advanced pro-
gramming concentrates on advanced object oriented features
such as inheritance, interfaces and polymorphism, and famil-
iarizes students with the most essential features of Java API,
exceptions and file I/O.

4.1 Study material and lectures
The study material and lectures play a key role in the

modeling phase in teaching the skills to be learned. On the
other hand, as programming is a craft, it requires plenty of
practice.

In order to avoid tons of preaching we reduced the number
of lectures from the usual 5 hours per week to just 2 hours.
Lectures and the supporting material did not even try to
cover every detail of the language. Rather only the required
overview for the exercises was given and students were sup-
ported and encouraged to look for information themselves.

All the material shown in the lectures was available to
students on-line. The material was a web page, written
in book-like format. The material followed the structure
of exercises, allowing students to read the material as they
proceeded with the exercises, providing scaffolding for the
actual process of learning by doing.

In the material and lectures all the constructs were always
presented with relevant examples from the point of view of
exercise solving. This allowed students to remember that the
programming tasks in exercises were often just variations of
the examples shown in the lectures.

In addition to knowing a collection of language constructs,
problem-solving skills are needed in programming. In the
material and the lectures the main idea was to give worked
examples, not just to show working code or show direct an-
swers, but to demonstrate step by step how a solution could
be devised for a problem. This approach helped students to
identify good ways of solving programming problems already
during the lectures.

4.2 Exercises
It is expected that students use most of the time they

devote to the course in active solving of programming exer-
cises. This trains the routine and gives a constant feeling
of success by achieving small goals. The exercises espe-
cially in the beginning of the course were aimed to build
up programming routines and confidence, partly motivated
by the Software Craftsmanship community’s idea of Code
Katas, which are small exercises which help programmers
to improve their skills through practice and repetition. As
Corey Heines puts it ”practising the solution to a Kata un-
til the steps and keystrokes became like second nature, and
you could do them without thinking. In this way, you can
internalize the process/technique you are practicing until it
is under your fingers” [13].

For each week we introduced a set of new exercises, an
amount ranging from 15 to almost 40. Most of the initial
exercises were small, like ”output numbers from 1 to 99”.
Sequentially done small exercises combined as bigger pro-
grams. This approach in composing bigger programs showed
students how to split a big task to smaller sub-tasks – a vital
skill in programming.

The exercise difficulty was worked out to be incremental.
The first ones of the weekly exercises were used to ”warm
up” students, providing the first small goals to get started
and keeping students in their comfort level.

Each task had a short textual description of the expected
behavior of the program. Two additional implementations
of technical scaffolding were also introduced: Output- and
Main-driven Programming. These two techniques provided
additional support for the student.

95

Output-driven Programming

Similarly to Test-driven Development [3] where the unit test
for the code is implemented first, our exercises showed the
output of the program that the student was supposed to
match with his implementation. A typical exercise looked
like this:

"Write a program that asks user’s name and then
outputs it"

Give your name: Matti

Hello, Matti!

This allowed students to understand the textual descrip-
tion of the task better. The expected output also allowed
students to verify that their program is working correctly
and the small goal is achieved.

The expected output can also provide additional hints for
structuring the program. An example of this is shown in the
next example.

"Write a program that reads a number from the user.
The program checks if the range of the number is
between 0 and 100."

Give a number: -2
Please give a number between 0 and 100!

Give a number: 102
Please give a number between 0 and 100!

Give a number: 2
Thank you!

From the above output it is possible to determine required
parts and their behaviors, providing a starting point for the
implementation: the output suggests that there is some kind
of loop in the program code combined with reading and con-
ditions.

Main-driven Programming

Later when the tasks became more complicated Main-driven
Programming, an extension of Output-driven Programming,
was introduced. We gave a small testing program that could
be inserted into the main method of a Java program.

In the next example the task is to design a TravelCard-
class, which would have an owner and balance.

Copy this to your main-method:

TravelCard artosCard = new TravelCard("Arto");
System.out.println(artosCard);

Expected output:

Owner Arto, balance 0.0 euros

To complete this task the student has to create a new
class named TravelCard and figure out how to implement
a toString()-method and required attributes for the class.
This ensures on some level that the structure in the final
program will be good.

4.3 Exercise Sessions
Exercise sessions were organized in computer labs where

students worked to solve the exercises. Help was continu-
ously available during the exercise sessions in the form of

teachers and teaching assistants, e.g. the instructors. Any-
one could enter the class without having to reserve a specific
slot. Every week had 8 hours of exercise sessions, and stu-
dents could attend as many sessions as needed.

An important principle in our approach was that the pro-
gramming started as early as possible. The first exercise
session was right after the starting lecture of the course. For
the first week the students already had 30 small exercises.
Due to the guidance available in exercise sessions even those
with no previous experience of programming managed well
with the start early approach: 88% of the students finished
over 25 exercises during the first week. The quick and en-
couraging start raised the self-confidence and comfort level
of students, and also had an immense effect on their moti-
vation.

In order to enforce good programming habits, students
had to have their finished solutions accepted by the instruc-
tors. If an instructor noticed a flaw in the approach (bad
naming or indentation, too complex solution logic for the
problem, etc.), he pointed it out, and the student had to
redo parts of the exercise. In general we allowed no compro-
mises in the solutions of students. This way, each student
refined their solutions to the point where the solutions could
be passed as ”model answers”.

4.4 Continuous Feedback
During the course we implemented continuous feedback to

provide fast evaluation and a continuous feeling of progress
for the students. During the exercise sessions students re-
ceived positive reinforcement in the form of instructors that
were aiding them forward.

If a student did not have specific questions during the ex-
ercise session, the instructors still actively engaged with him
to make sure he was working towards the right direction. If
something to correct was noticed, the instructor nudged the
student to the right direction by questioning the approach
or by providing constructive feedback. This was the key
continuous feedback as the hints received during the learn-
ing process are essential for acquiring good programming
and problem-solving habits. Instructors were not allowed to
give direct solutions to the exercises, and the key idea was
to support the students so that they could figure out the
solutions themselves.

In addition to instructor feedback, students had their com-
pleted exercises marked down to a check-list, allowing them
to see the check-list filling with marked exercises. We feel
that the list played an important role in feedback; every
check was a small victory. Check-lists were also updated
to the course web-page at the end of every day, allowing
students to see the progress of other students as well.

In addition to evaluation during exercises, students were
evaluated with 3 small biweekly exams done with the com-
puter and a final traditional exam. Small exams provided
valuable feedback for students and also to instructors through-
out the courses.

The final exam was constructed to be as similar as possible
to the usual programming exams conducted at our university
to provide meaningful comparison of the course results. The
exam was a paper exam consisting mostly of programming
on paper. It was not allowed to use any material in the
exam. A student had to get 50 % of the total maximum
score in order to pass the course.

96

5. COURSE RESULTS
The introductory programming courses at the Depart-

ment of Computer Science at the University of Helsinki are
taught during both fall and spring semesters. Fall semesters
consist mostly of students who are majoring in computer
science, while spring semesters have mostly students who
have computer science as a minor subject. Some of the stu-
dents minoring in computer science participate only in the
Introduction to programming course and do not proceed to
Advanced programming.

Until spring 2010 the introductory programming courses
have followed the traditional lecture and take-home exercise
model. The first course implementation following Extreme
Apprenticeship was during the spring semester 2010.

Next we will compare the outcome of the Extreme Ap-
prenticeship-based course to the previous course instances
from past 8 years in terms of percentage of passed stu-
dents. The results are reported separately in the tables
below for Introduction to programming and Advanced pro-
gramming. The Extreme Apprenticeship-based implemen-
tation in spring 2010 is highlighted using bold face. The
column titled n denotes the number of total participants.

As stated in the previous section, the paper exam in the
spring 2010 implementation was similar to the ones that
had been used in the course for years already. Because it
has always been a requirement to get 50% of the exam score
to pass the course, the numbers should be comparable for
all the course implementations.

Introduction to Advanced
Programming Programming

n passed
s02 92 38.0 %
f02 332 53.6 %
s03 98 39.8 %
f03 261 64.0 %
s04 84 61.9 %
f04 211 59.2 %
s05 112 46.4 %
f05 146 54.1 %
s06 105 41.9 %
f06 182 65.4 %
s07 84 53.6 %
f07 162 53.0 %
s08 72 58.3 %
f08 164 56.1 %
s09 53 47.7 %
f09 140 64.3 %
s10 67 70.1 %

n passed
s02 88 26.1 %
f02 249 56.2 %
s03 65 30.8 %
f03 228 59.2 %
s04 66 43.9 %
f04 177 66.1 %
s05 70 57.1 %
f05 125 56.0 %
s06 52 44.2 %
f06 147 67.3 %
s07 53 58.5 %
f07 136 59.6 %
s08 29 51.7 %
f08 147 56.5 %
s09 22 50.0 %
f09 121 60.3 %
s10 44 86.4 %

Let us first analyze data from Introduction to program-
ming. The long-term average (excluding spring 2010) for
passed students in fall semesters is 58.5 % and in spring
semesters 43.7 %. One of the reasons for the higher dropout
rate in spring courses might be the student population. In
spring terms most of the participants are minoring in com-
puter science, and quite likely have weaker backgrounds for
programming. As can be seen, the percentage of passed stu-
dents in spring 2010 was higher than it has previously been,
70.1 % of the students starting the course passing it, the sec-
ond highest pass-rate being 65.4 %. Extreme Apprenticeship

seemed to bring clear benefits, especially in comparison to
normal spring term results.

The trend in the Advanced programming course is simi-
lar: the average passing percentage in fall terms is 60.1 %
and in spring 45.3 %, both being marginally higher than the
acceptance percentages for the introductory course. This
is most likely due to the fact that most of the students
that fail the Introductory course do not take part in Ad-
vanced programming. The acceptance percentage in spring
2010 was 86.4 %, an all-time high in the department with
a clear margin. The most natural explanation for the re-
markably high passing rate is that the programming routine
built during normal course implementations has been quite
fragile for an average or below average student. In the Ex-
treme Apprenticeship-based course those students who sur-
vived from the initial shock of Introduction to Programming
seem to have been getting better and better all the time.
With a strong routine built during the introductory course
the challenging new concepts encountered in the advanced
course have been rather easy to master.

6. CONCLUSIONS
The Extreme Apprenticeship presented in this paper pro-

vides a good structure for teaching skills that require build-
ing routine and learning best practices from the masters.
Emphasizing scaffolding in combination with the set of val-
ues and practices yields very promising results as seen in the
initial implementations with 67 and 44 students, the most
important result being the significant decrease in dropout
rates.

We believe that the Extreme Apprenticeship method’s
idea of taking continuous feedback and scaffolding to an ex-
treme level provides enough support to also help some of the
inefficient novices, who usually drop programming courses,
to learn programming.

The role of relevant exercises for making learning by doing
a reality is a key factor in this approach. The amount of
work that a student puts into exercises can have a negative
impact on motivation if the exercises do not support his
learning process in a meaningful way.

The majority of the anonymous student feedback indi-
cated that learning by doing was considered motivating and
rewarding. A quote from an anonymous feedback summa-
rizes the positive outcome of this approach: ”The best thing
on the course was the amount of exercises and exercise groups
and the availability of teachers. It was very rewarding to be
on a course where you could understand the course content
by simply working diligently. Making mistakes also helped to
learn things.”

The outcome of our initial experiment was so encouraging
that the same approach is currently being applied to the fall
semester course with almost 200 participants.

7. ACKNOWLEDGMENTS
We thank The Head of Studies, PhD Jaakko ”Gandhi”

Kurhila for his support and inspiration.

8. REFERENCES
[1] O. Astrachan and D. Reed. AAA and CS 1: the

applied apprenticeship approach to CS 1. In SIGCSE
’95: Proceedings of the twenty-sixth SIGCSE technical

97

symposium on Computer science education, pages 1–5.
ACM, 1995.

[2] A. Bandura. Social foundations of though and action:
a social cognitive theory. Prentice-Hall, 1986.

[3] K. Beck. Test Driven Development: By Example.
Addison-Wesley, 2002.

[4] K. Beck and C. Andres. Extreme Programming
Explained: Embrace Change (2nd Edition).
Addison-Wesley Professional, 2004.

[5] S. Bergin and R. Reilly. The influence of motivation
and comfort-level on learning to program. In
Sroceedings of the 17th Workshop on Psychology of
Programming, PPIG’05,, 2005.

[6] T. R. Black. Helping novice programming students
succeed. J. Comput. Small Coll., 22(2):109–114, 2006.

[7] R. E. Bruhn and P. J. Burton. An approach to
teaching java using computers. SIGCSE Bull.,
35(4):94–99, 2003.

[8] M. E. Caspersen and J. Bennedsen. Instructional
design of a programming course: a learning theoretic
approach. In ICER ’07: Proceedings of the third
international workshop on Computing education
research, pages 111–122. ACM, 2007.

[9] A. Collins, J. Brown, and S. Newman. Cognitive
apprenticeship: Teaching the craft of reading, writing
and mathematics. In Knowing, Learning and
Instruction: Essays in honor of Robert Glaser.
Hillside, 1989.

[10] A. Collins, J. S. Brown, and A. Holum. Cognitive
apprenticeship: making thinking visible. American
Educator, 6:38–46, 1991.

[11] S. Grissom and M. J. Van Gorp. A practical approach
to integrating active and collaborative learning into
the introductory computer science curriculum. In
Proceedings of the seventh annual consortium on
Computing in small colleges midwestern conference,
pages 95–100, USA, 2000. Consortium for Computing
Sciences in Colleges.

[12] M. Hassinen and H. Mäyrä. Learning programming by
programming: a case study. In Baltic Sea ’06:
Proceedings of the 6th Baltic Sea conference on
Computing education research: Koli Calling 2006,
pages 117–119. ACM, 2006.

[13] C. Heines. http://katas.softwarecraftsmanship.org/.

[14] K. Huffman and M. Vernoy. Psychology in Action.
Wiley, 2003.

[15] T. Jenkins. The motivation of students of
programming. In ITiCSE ’01: Proceedings of the 6th
annual conference on Innovation and technology in
computer science education, pages 53–56. ACM, 2001.

[16] M. Kölling and D. J. Barnes. Enhancing
apprentice-based learning of java. In SIGCSE ’04:
Proceedings of the 35th SIGCSE technical symposium
on Computer science education, pages 286–290. ACM,
2004.

[17] M. R. Lepper. Motivational considerations in the
study of instruction. Cognition and Instruction,
5(4):289–309, 1988.

[18] L. Lumsden. Motivation, Cultivating a Love of
Learning. ERIC Clearinghouse on Educational
Management, University of Oregon, 1999.

[19] R. Martin. Review of the Pete McBreen’s book
Software Craftmanship,
http://www.mcbreen.ab.ca/SoftwareCraftsmanship/.

[20] R. E. C. Paul A. Kirschner, John Sweller. Why
minimal guidance during instruction does not work:
An analysis of the failure of constructivist,
problem-based, experiental, and inquiry-based
teaching. Educational Psychologist, 41(2):75–86, 2006.

[21] A. Pears, S. Seidman, L. Malmi, L. Mannila,
E. Adams, J. Bennedsen, M. Devlin, and J. Paterson.
A survey of literature on the teaching of introductory
programming. In ITiCSE-WGR ’07: Working group
reports on ITiCSE on Innovation and technology in
computer science education, pages 204–223. ACM,
2007.

[22] D. Perkins, C. Hancock, R. Hobbins, F. Marsin, and
R.Simmons. Conditions of learning in novice
programmers. In Studying the novice programmer,
pages 261–279. Lawrence Erlbaum, 1989.

[23] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13:137–172, 2003.

[24] H. Roumani. Design guidelines for the lab component
of objects-first cs1. In SIGCSE ’02: Proceedings of the
33rd SIGCSE technical symposium on Computer
science education, pages 222–226. ACM, 2002.

[25] J. C. Spohrer and E. Soloway. Novice mistakes: are
the folk wisdoms correct? Commun. ACM,
29(7):624–632, 1986.

[26] D. Stipek. Motivation to Learn: From theory to
practice. Prentice Hall, 1988.

[27] L. S. Vygotsky. Mind in Society: The Development of
Higher Psychological Processes. Harvard University
Press, Cambridge, MA, 1978.

[28] K. J. Whittington. Infusing active learning into
introductory programming courses. J. Comput. Small
Coll., 19(5):249–259, 2004.

[29] S. Wiedenbeck, D. LaBelle, and V. Kain. Factors
affecting course outcomes in introductory
programming. In Workshop on Psychology of
Programming, PPIG’04, pages 97–109, 2004.

[30] B. C. Wilson and S. Shrock. Contributing to success
in an introductory computer science course: a study of
twelve factors. In SIGCSE ’01: Proceedings of the
thirty-second SIGCSE technical symposium on
Computer Science Education, pages 184–188. ACM,
2001.

[31] L. Winslow. Programming psychology - a
psychological overview. SIGCSE Bulletin, 27:17–22,
1996.

98

